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Abstract 

We introduce the notion of co-learning, which refers to a process 
in which several agents simultaneously try to adapt to one another's 
behavior so as to produce desirable global system properties. Of par- 
ticular interest are two specific co-learning settings, which relate to 
the emergence of conventions and the evolution of cooperation in so- 
cieties, respectively. We define a basic co-learning rule, called Highest 
Cumulative Reward (HCR), and show that it gives rise to quite non- 
trivial system dynamics. In general, we are interested in the eventual 
convergence of the co-learning system to desirable states, as well as 
in the efficiency with which this convergence is attained. Our results 
on eventual convergence are analytic; the results on efficiency proper- 
ties include analytic lower bounds as well as empirical upper bounds 
derived from rigorous computer simulations. 

"This work was supported in part by AFOSR grants F49620-92-J-0547-P00001 and 
F49620-94-10090, and by NSF grant IRI-9220645. 
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1     Introduction 

In multi-agent AI systems, such as multi-planner systems, it is crucial that 
the agents agree on certain rules, in order to decrease conflicts among them 
and promote cooperative behavior. Without such rules even the simplest 
goals might become unattainable by any individual agent, or at least not 
efficiently attainable (just imagine driving in the absence of traffic rules). 
These rules strike a balance between on the one hand allowing agents suffi- 
cient freedom to achieve their goals, and on the other hand restricting them 
so that they do not interfere too much with one another. Some of these 
rules are social laws, designed and imposed ahead of time; traffic laws are 
an example. Previous work [8, 11] investigated some aspects of this off-line 
design of social law. However, not all rules can be legislated in advance. This 
is either because the characteristics of the society are unknown, or because 
they change over time. In such cases, it is often important that the society 
converge on a convention in a dynamic fashion. In human societies this is 
common; this is how (e.g., software) standards emerge long before they are 
enshrined in official regulations. 

How do such conventions emerge? The usual process, which will motivate 
our formal framework, is one in which individual agents occasionally interact 
with one another, and as a result gain some new information. Based on 
its personal accumulated information, each agent updates its behavior over 
time. Since all agents are simultaneously engaged in this activity, we call the 
process co-learning. 

The complexity of co-learning derives from its concurrent nature: as one 
agent adapts to the behavior of the agents it has encountered, these agents 
update their behavior in a similar fashion. This tends to result in highly non- 
linear system dynamics. The typical question we will be interested in is how 
different update rules and other system characteristics affect the eventual 
emergence of desirable global system characteristics (for example, a conven- 
tion), and how efficiently these desirable states are achieved. As it turns out, 
our results on eventual convergence will be primarily analytic, whereas the 
results on efficiency include both analytic lower bounds and empirical upper 
bounds derived from extensive computer simulations. 

Although our initial motivation for this research lay in our interest in 



multi-agent systems, co-learning is obviously a natural extension of work 
in Machine Learning (ML). Research in ML is typically concerned with an 
agent that tries to adapt to an environment. In different areas of research 
in ML the environment has different structures: it might be a stochastic 
process that generates examples [3], a teacher[14], a source of reinforcement 
feedback [13], and so on. In all work in ML of which we are aware, however, 
the environment is passive: the agent tries to adapt to the environment, but 
in no sense does the environment try to adapt to the agent.1 This is an 
appropriate model in many applications, but not in all. 

This having been said, it is the case that the formal setting of co-learning 
to be presented is similar to that of reinforcement learning. At any point 
in time, each agent selects one of several possible actions, and as a result 
receives a particular payoff or feedback. On the basis of the feedback, the 
agent might update its behavior and decide on a new action. If the agent 
chooses a satisfactory update rule, then the group of agents will eventually 
exhibit some satisfactory emergent behavior. Again, the critical property of 
co-learning is that the update performed by one agent might well affect the 
future feedback of other agents. 

In order to study co-learning, we must be more precise about the crite- 
ria of successful learning, as well as the nature of the feedback agents get. 
Starting from the former, standard ML enjoys natural measures of the suc- 
cess of the learning process. These include an increase in the ability of an 
agent (student) to identify instances of a concept, an improvement in its 
ability to predict the next symbol generated by a stochastic source, and so 
on. Co-learning, on the other hand, does not come equipped with such ob- 
vious criteria. In order to measure the success of co-learning we will have to 
introduce external measures; these will measure the success of the society, 
as opposed to success of individuals. Much of the paper will concentrate on 
two particular criteria of success, called convention and cooperation, which 
will be defined later. 

The feedback that an agent gets, given the action it has chosen and the 
state of the environment (that is, the action of other agent(s)), can be repre- 
sented in various forms. Works within ML diverges on this form: it may be a 

xTo the reviewer: We believe this statement is essentially correct, but welcome pointers 
to exceptions; those will not invalidate the contribution of the paper, hopefully. 



positive/negative answer to a query, a numerical value, etc. In the framework 
of co-learning there is a natural candidate for the feedback representation. 
The actions that the agents perform at a particular point can be treated as 
strategies in a game in the sense of economics (see [9], and definitions in 
next section), with the agent's payoff at each point being interpreted as its 
feedback. This game-theoretic representation is quite general, and can be 
specialized by defining particular types of payoff functions; each restriction 
on the payoff function defines a particular game type. Despite these game- 
theoretic matrices, however, the similarity between our framework and game 
theory will be limited. In particular, we emphasize that the payoff function 
will determine the feedback of the agents, but not their update rule nor the 
criterion of success; those will have to be denned independently. 

A major part of this paper is devoted to the study of a simple but fun- 
damental update rule, and its effects on co-learning. Roughly speaking, this 
update rule states that the agent should adopt the action that has yielded 
the highest cumulative reward to date. We refer to this update rule as the 
Highest Cumulative Reward (HCR) update rule. This is perhaps the simplest 
update rule that comes to mind; certainly it is simpler than update rules in 
the reinforcement-learning literature, such as Q-learning [15]. However, the 
simultaneous adaptation of the various agents will lead to highly nontrivial 
behaviors even with this relatively simple rule. We will be able to show that 
this simple rule leads to eventual success in a large class of games, including 
two basic games associated with the notions of convention and cooperation 
respectively. We will also demonstrate that such convergence properties do 
not tell the whole story; through computer simulations, we will show that in 
one type of game HCR leads to very rapid convergence, and in another it is 
quite hopeless as a practical method. We will also demonstrate additional 
surprising and illuminating phenomena associated with the HCR rule. 

It should be emphasized that co-learning is a novel framework. As we 
have discussed, it is a clear generalization of learning. It is also related 
to, but different from, dynamics of other systems, of the sort that arise in 
physics, biology, and economics. We will discuss connections with related 
work further in Section 5. 

This paper is organized as follows. Section 2 formally defines the co- 
learning setting, the particular setting of convention evolution and coopera- 
tion evolution, and proves general convergence results of HCR in these set- 



tings. We then start to address the efficiency of convergence: Section 3 con- 
centrates on the convention evolution setting, while Section 4 concentrates 
on the cooperation evolution setting. Section 5 is devoted to a discussion 
about related frameworks. Finally, Section 6 summarizes the main message 
of the article. 

2     Social Games and the HCR Update Rule 

The basic framework we present shares some features with recent work in 
game theory (e.g., [5]), which in turn was inspired by work in theoretical 
biology. In spite of this similarity, there are significant differences between 
the approach we take and work in game theory. We will discuss the differences 
in a later section; here we will develop the material in a self-contained fashion. 

2.1     Social Games 

We start by defining the standard notion of a (one-shot) game. Intuitively, a 
game involves a number of players, each of which has available to it a number 
of possible actions.2 Depending on the actions selected by each agent, they 
each receive a certain payoff, or reward. The payoffs of the different agents are 
in general independent of one another, and are captured in a payoff matrix. 
Formally: 

Definition 1 [k-person game]: A k-person game is defined by a k-dimensional 
matrix M, the entries of which are each a k-long vector of real numbers. 

Intuitively, each dimension of the matrix represents the possible actions 
of the k players of the game. The j'th element of the vector residing in 
the (H,12, • • • ,ik) cell of M represents the feedback to the j'th player if the 
actions taken by all the players are it,i2,... ,ik, respectively. 

In this article we will be concerned mostly with 2-persons-2-choices games 
(i.e., k=2 and M is a 2 x 2 matrix). More specifically, we will be concerned 
with homogeneous games that are defined below.   In these games the role 

2In economics the term 'strategy' is used rather than the term 'action'; in our context 
the latter term seems preferable. 



of the two players is identical. We will discuss the intuition behind this 
homogeneity requirement later, in connection with the definition of action- 
update functions. 

Definition 2 [homogeneous game]: Let g be a 2-persons-2-choices game. 
Let Ui(x,y) be the payoff for agent i when the first agent performs action 
x and the second agent performs action y. The game g will be called an 
homogeneous game iff the following hold: 

1. The same two actions are available to each of the two agents. 

2. Ui(x,y) = Uj(y,x) for all x,y, and i ^ j. Technically, this requirement 
causes the payoffs of one agent to coincide with the payoffs of the 
other agent on the major diagonal of the matrix, and to be a mirror 
view of the other agent payoffs on the other diagonal. Intuitively, this 
requirement says that the payoff for agents do not depend on the agents' 
names. 

In the remainder of the article, a game will be understood to be homoge- 
neous, unless specified otherwise. 

A game defines the feedback that the agents will get when they choose 
(and perform) certain actions. We refer to the collection of actions chosen and 
performed by all agents as their joint action. Next we define an evaluation 
criteria of joint actions. Unlike in economics (see later discussion), in our 
setting the designer of the system has the freedom to declare the evaluation 
criteria. The designer will define some of the joint actions to be successful 
joint actions. Formally: 

Definition 2 [k-person social game]: A k-person social game is defined 
by (i) a k-person game, and (ii) a subset of the joint actions in the game 
(called the successful joint actions). 

Given an homogeneous game, a corresponding social game will be referred 
to as homogeneous social game. Again, in the remainder of the article we will 
concentrate on 2-person social games. We should remark that the fact that 
we have both positive-valued and negative-valued payoffs will turn out to be 
quite important; this stands in contrast with work in economics and genetics, 
in which system properties tend to be insensitive to offsetting payoffs by a 



constant. Here are two examples of social games featuring both positive and 
negative payoffs. These two games, which are well-known in the literature 
and which will figure prominently later in the article, capture coordination 
and cooperation among agents, respectively. Intuitively, the first game de- 
scribes a situation in which the goal is to reach homogeneity in the society, a 
goal that is reflected in both the evaluation criteria and the payoff structure; 
it is also a a basic game in Lewis' study of conventions [7]. 

Definition 3: [the convention game]: Denote the payoff function for a 
particular agent by u. 

Payoff: u(x) = 1 if the other agent performs x, and —1 otherwise. 

Success: Joint actions in which all agents select the same action are success- 
ful; the others are not. 

The second game we will consider corresponds to the well known prison- 
ers' dilemma setting, of the sort studied for example in Axelrod's [2]. This 
game is a basic game for the study of cooperation. 

Definition 4: [the cooperation game, aka prisoners' dilemma]: De- 
note the actions available to the agents by c (for 'cooperate') and d (for 
'defect'), and the payoff function for a particular agent by u. 

Payoff: u is defined by the parameters w,v,x, such that w > v > x > 0. 
u(c) — x if the other agent performs c; u(c) = — w if the other agent 
performs d; u(d) = w if the other agent performs c; u(d) = — v if the 
other agent performs d. 

Success: The joint action in which all the agents cooperate (i.e., adopt c) is 
successful; the others are not. 

In fact, the term 'prisoners' dilemma' is slightly misleading here. Al- 
though the payoff matrix is the same as that encountered in economics, in 
fact in our setting there is no dilemma associated with it, which brings us to 
the last point associated with the general framework: How do agents select 
their actions? In economics, this question is answered to a large extent by 
the payoff matrix itself. Much work in economics assumes that the play- 
ers have access to this matrix, and, even more strongly, that this matrix is 



common knowledge to the players (that is, they each know that they each 
know it, and so on). Based on this assumption it is then argued that certain 
actions are irrational for a player, since the player can reason that his payoff 
would be higher were he to take another action, no matter what other actions 
are taken by the other players. This gives rise to interesting static notions 
such as dominance, and participates in the definition of other notions such 
as Nash equilibrium and Pareto-optimality [9], and of dynamic notions such 
as evolutionary stable strategies (ess's) [12]. 

We do not follow this route, and instead stay closer to the spirit of re- 
inforcement learning. In our framework, the payoff matrix is the designer's 
way of encoding the feedback given to the agents, but it is not accessible to 
the agents, nor does it uniquely determine their behavior. In particular, the 
matrix does not place any restriction on the way in which agents select their 
actions; the feedback the agents accumulate serves as input to a function 
which computes their next action, but that function is a new degree of free- 
dom. We call this function the action-update function, or simply the update 
function. The basic question is how different update rules and other system 
characteristics affect the emergence of successful joint actions. 

First, however, we need to define the process by which agents accumulate 
feedback; we do this through the following definition. 

Definition 5 [n-k-g stochastic social game]: An n-k-g stochastic social 
game consists of a set of n agents, a k-person social game g, and an unbounded 
sequence of ordered k agents selected from a uniform distribution over the n 
given agents.3 

Intuitively, a stochastic social game describes a process in which, repeat- 
edly, random k agents meet and play the particular game. Given that agent 
i is selected to play the role of player j in the game g in one of the rounds of 
n-k-g, i must choose an action from among the actions available for player 
j in the game g, given its (i.e., agent z's) previous history of actions and 
payoffs. A well-chosen action-update function will guarantee that the agents 
eventually settle on a successful joint action, as defined by the social game 
g, and hopefully do so fast. 

3 The uniform-distribution assumption is made to simplify the discussion, but it can be 
relaxed and the results in the paper can be generalized suitably. 
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2.2    The Highest Cumulative Reward Rule 

As we have said, the update function (also called the 'update rule') deter- 
mines how an agent updates its behavior, based on its history of action and 
feedback. We would like to understand how different update rules affect the 
emergence of successful joint actions. 

Before we begin to explore this question, we should explain an important 
and subtle assumption that we will be making, namely that the update rules 
cannot make use of specific names, either of agents or of actions. Mathemat- 
ically speaking, we will enforce this condition by requiring that if names of 
agents or actions are changed (or, in particular, exchanged), then the names 
of the actions chosen during the stochastic game will be changed in a corre- 
sponding fashion. For example, if we have an update rule guaranteeing that 
in the stochastic cooperation game agents eventually all settle on the c ('co- 
operate') action, then in the modified game in which we exchange the names 
of the actions c and d (and otherwise leave then payoff matrix unchanged) 
the same rule should guarantee that the agents eventually all settle on the d 
('defect') action. 

The intuition behind this assumption is more important that its mathe- 
matical definition, however. We are interested in emergent successful joint 
action precisely in cases in which we cannot anticipate in advance the games 
that will be played. For example, if we know that the coordination problem 
will be that of deciding whether to drive on the left of the road or on the 
right, we can very well use the names 'left' and 'right' in the update rule; in 
particular, we can admit the trivial update rule which has all agents drive 
on the right immediately. Instead, the type of coordination problem we are 
concerned with is better typified by the following example. Consider a col- 
lection of manufacturing robots that have been operating at a plant for five 
years, at which time a new collection of parts arrive that must be assembled. 
The assembly requires using one of the three available attachment widgets, 
which were introduced three years ago (and hence were unknown to the de- 
signer of the robots five years ago). Any of the three widgets will do, but 
if two robots use different ones then they incur the high cost of conversion 
when it is time for them to mate their respective parts. Our goal is that 
eventually, and hopefully even rapidly, the robots will learn to use the same 
kind of widget. The point to emphasize about this example is that five years 



ago the designer could have state rides of the general form "if in the future 
you have several choices, each of which has been tried this many times and 
has yielded this much payoff, then next time make the following choice"; the 
designer could not, however, have referred to the specific choices of widget, 
since those were only invented two years later. 

This explains why we do not want the update rules to rely on action 
names. The prohibition on using agent names in the rules (e.g., "if you see 
Robot 17 use a widget of a certain type then do the same, but if you see Robot 
5 do it then never mind") is similarly motivated by the dynamic nature of 
the society; agents drop in and out of the society, denying the designer the 
ability to anticipate membership in advance. We definitely acknowledge that 
it is often useful to single out certain agents (such as Head Robot), and have 
them be treated in a special manner. We are very interested in the role of 
agents with special identities (and in particular in the role of organization 
structure), but even with those it is still the case in a rich setting most of the 
agents will not be distinguishable in this fashion. In this article we investigate 
the emergence of successful joint actions only in such 'faceless masses,' and 
completely ignore the role of personal identities. 

We are now ready to start investigating useful action-update rules. In 
[10] we reported on preliminary results of experiments with a number of such 
rules. Here, however, we will concentrate on one particular update rule, called 
Highest Cumulative Reward. There are a few reasons we concentrate on this 
rule. First, it is a very natural one, perhaps the most basic rule one can 
imagine. Second, past experiments have shown it to be particularly effective 
in stochastic settings. Finally, we will see that, despite its simplicity, this 
rule gives rise to highly nontrivial phenomena. (In the following definition, 
recall that in this article games are by default 2-persons-2-choices games.) 

Definition 6 [HCR]: According to the Highest Cumulative Reward update 
rule (or HCR), an agent changes it current action iff the total payoff obtained 
from the other action in the latest I iterations is greater than the payoff 
obtained from the currently-chosen action in that time period. 

The parameter I in the above definition denotes a finite bound, but the 
bound may vary. In the experimental studies reported later I is greater than 
the number of iterations (i.e., agents refer to their full history), unless stated 
otherwise. 
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We would like to understand now HCR affects the emergence of successful 
social behavior, and, in particular, its effects on the evolution of convention 
and cooperation. In fact, we are able to show a result that applies to a broad 
class of social games, which include the convention and cooperation games. 
We call these games social agreement games. 

We start by defining a class of ordinary (one-shot, homogeneous) games. 
In the following, let Ui(x,y) be the payoff for agent i when the first agent 
performs action x and the second agent performs action y. 

Definition 7: 

A social game g is called an social agreement game iff 

1. g is a homogeneous social game, whose payoff matrix 

a b 
a *L> . «C U, V 

b v,u y,y 

has the following properties: 

(a) x, y,u,v ^ 0; that is, every outcome is always considered either 
positive or negative from the point of view of an agent. 

(b) Either x > 0 or y > 0 or both; that is, there exists a (not necessar- 
ily unique) action that, if adopted by both agents, yields positive 
payoff to both. 

(c) Either « < 0 oi t)< 0 or i < 0 or j/ < 0 ; that is, there exists 
some negative reward for failing to agree on an action that yields 
positive payoffs for all agents. 

2. a joint action is denned to be successful if and only if it yields positive 
payoffs for all agents. 

It is easy to see that the cooperation game and the convention game are 
both instances of social agreement games. The theorems below that refer to 
HCR assume that the parameter (memory bound) I is much larger than the 
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entries in the payoff matrix of the game. We also assume that I > n > 4, 
and that the payoffs in g have finite decimal representation. We can show: 

Theorem l:4 Given an n-2-g stochastic social agreement game, placing no 
constraints on the initial choices of action by all agents, and assuming that all 
agents employ the HCR rule, the following property holds: For every e > 0 
there exists a bounded number M s.t. if the system runs for M iterations 
then the probability that the system will arrive at a situation where only 
successful joint actions would be chosen is greater than 1 — e. Once we 
arrived at that situation, it will never be left. 

Corollary 1:   The HCR update rule guarantees eventual emergence 
convention and of cooperation, in the respective settings. 

of a 

2.3    The efficiency of evolution: a lower bound 

The above results shed some light on the eventual emergence of social be- 
havior, but they say nothing about the efficiency with which this behavior is 
attained; the remainder of this article is devoted to this question. We start 
by presenting a general lower bound on the efficiency of this process. This 
will be obtained by the following definition and theorem. 

Definition 8: 

Let g be a social agreement game. Consider the t iteration of an n-2-g 
stochastic social game, and the n • (n — 1) games (possible agent interactions) 
that might be played at that iteration. We define Xn(t) to be a random 
variable that contains the number of games that might be played in iteration 
t and result in an unsuccessful joint action. Let T(n) be a function which 
associates with each n a number (of iterations). Given an update rule R, 
and some distribution on the initial actions of the agents, we will say that R 
guarantees the emergence of successful joint actions after T(n) iterations, if 
E[Xn(T(n))} converges to 0. 

Roughly speaking, we measure how far is the system from guaranteeing 
successful joint action.   We would like this distance to be as close to 0 as 

4Sketch of proofs appears in the Appendix. 
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possible in a minimal number of iterations.  Notice that Theorem 1 implies 
that E[Xn(M(n))} converges to 0. We can also show a lower bound: 

Theorem 2: 

Let g be a social agreement game, and let R be an update rule. Assume 
there is some non-zero constant probability for starting with any particular 
action by any particular agent. If R guarantees the emergence of successful 
joint actions in the related n-2-g games in T(n) iterations, then T(n) = 
Q(n • log{n)) 

2.4    Reality check: how good is HCR in practice? 

At this point we seem to be converging on an understanding of the dynam- 
ics brought about by HCR; at least for social agreement games, we have a 
guarantee of eventual emergence to successful joint actions, as well as a cau- 
tionary lower bound on how fast we can expect to arrive at such a happy 
occasion. It would be natural to expect that subsequent investigations would 
provide finer and finer lower and upper bounds, increasing our understanding 
of HCR. 

Unfortunately, this has not been our experience. What we found instead 
was that rather specific properties of the particular games being played fla- 
vor the dynamics so strongly that it appears extremely difficult to arrive at 
general results at the level of a particular update function. We arrived at 
this conclusion through extensive computer simulations, which yielded re- 
sults that not only had not been anticipated, but in fact have not yet been 
explained mathematically even after the fact. 

Let us illustrate the point with the two games highlighted above, the 
convention and cooperation games. Both are instances of social agreement 
games, and hence subject to the upper and lower bounds presented in the 
previous section, and yet the practical experience with the two has been rad- 
ically different. In the case of the convention game, the HCR rule not only 
led to the emergence of convention, but it did so at a rate that approaches 
the theoretical lower bound. In contrast, in the cooperation game the HCR 
rule proved to be very inefficient, rendering it useless for most practical ap- 
plications. We will elaborate on these points in the following sections. 
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The sensitivity of the system is perhaps not very surprising, given the 
experience in other disciplines with complex dynamic systems (disciplines 
such as physics, economics, and biology; see later section). If any lesson 
from those disciplines carries over, it is that analytic results must at the very 
least be complemented by experimental ones. Certainly our experience has 
been that we have gained more insight into the evolution of convention and 
cooperation through simulation than through analysis. The remainder of this 
article reports on some of our more informative experimental findings. 

3     Convention Evolution 

In the previous section we showed that HCR leads to the emergence of suc- 
cessful joint actions, provided a lower bound on the efficiency ofthat process, 
and ended by showing that these bounds still hide many interesting prop- 
erties that are specific to particular stochastic games. In this section we 
concentrate on the efficiency of convention evolution, and in particular on 
the effects of different modifications of HCR and parameters of the system 
on that efficiency. We concentrate on this update rule, although we investi- 
gated other update rules that led to interesting phenomena as well (see [10]), 
since it led to the most interesting phenomena and to efficient convention 
evolution (as will be discussed in 3.4). Unless stated otherwise, the exper- 
imental results appearing in this section and in the following section refer 
to experiments with 100 agents starting with random initial actions. Each 
experiment consists of many trials, each of which consists of a run of the 
stochastic game for a given number of iterations. 

3.1     The effect of update frequency 

The first parameter and modification we consider concern update frequency. 
In the previous section we assumed that each agent updates5 its behavior at 
each iteration. What happens if agents update their behavior less frequently? 
(This condition might be imposed by internal limitations of the system, or 

5By 'update' we mean the application of the update function; the result need not be a 
change in action. 
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Figure 1: The effects of update frequency 

alternatively might be selected voluntarily to impose greater stability on the 
system.) We found that when the frequency of update decreases, then the 
efficiency of convention evolution decreases. Our results can be illustrated 
by Figure 1. In this figure, the x coordinates describe the distance between 
iterations in which update is performed, while the y coordinates describe the 
number of trials from among 4000 trials of 1600 iterations each in which more 
than 95% of the agents reached a convention. 

3.2    The effect of memory restarts 

We investigated the effects of memory size on the efficiency of convention 
evolution. We consider two forms of limited memory; one is treated in this 
subsection, and the other one will be treated in Section 3.4. One type of 
limited memory is a memory that is restarted from time to time. When the 
memory is restarted, the agents' current actions (the ones they will now start 
with) are not forgotten, but previous history is. This might be in particular 
interesting in systems which stop operating for a short while from time to 
time. For example, a society might be interested in a particular coordination 
only in some periods of the year, where agents are assumed to forget what 
they have exactly seen in the previous periods although they still remember 
their current (latest) action.   We investigated the efficiency of convention 
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Figure 2: The effects of memory restarts 

evolution as a function of the frequency of memory restarts. We found that 
when the distance between iterations where the memory is restarted de- 
creases, then the efficiency of convention evolution decreases. This can be 
illustrated by Figure 2. The x coordinates of this graph correspond to the 
distance between iterations where the memory is restarted. The y coordi- 
nates describe the number of trials from among 4000 trials of 800 iterations 
each, in which more than 85% of the agents reached a convention. 

The reader may be tempted to treat this as an 'obvious' result; however, 
full memory is not always an advantage. Sections 3.3 and 3.4 will provide 
some examples; here is another example. We ran an experiment in which 
agents restarted their memory always and only after changing their action. 
In that case the evolution of convention was even more efficient than in the 
case of full memory; in 3298 from among 4000 trials of 800 iterations each, 
more than 85% of the agents reached a convention (while with complete 
information this was true of only 3010 of the trials.) 

3.3     Co-varying memory size and update frequency 

We have so far varied update frequency and memory independently; we now 
show that these two parameters interact.  Consider the results from section 
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Figure 3: The case in which update frequency = memory restart frequency 

3.1, where we showed that the rate of convention evolution is a monotonic in- 
creasing function of update frequency. We now show that decreasing memory 
blocks the degradation of convergence with the decrease in update frequency. 
Specifically, in this experiment we adopted the memory-restart model, and 
varied together the memory-restart frequency and the update frequency; that 
is, at the end of each window each agent updated its choice according HCR 
for that window. The general result we obtained is that when update be- 
comes infrequent (there is a long delay between action updates), then it is 
better to restart the memory from time to time than to rely on the whole 
memory. Our results are illustrated in Figure 3. The x coordinate of this 
figure corresponds to the update frequency, which is equal to the number of 
iterations between consecutive memory restarts. That is, in this case, we had 
a single interval which served both as the update frequency and the memory 
restart frequency. The y coordinates correspond to the number of trials from 
among 4000 trials of 1600 iterations each in which 95% of the agents reached 
a convention. It is illuminating to compare Figure 3 to Figure 1 (where full 
memory is assumed); when the update frequency drops below about 100 it- 
erations, it becomes better to use the statistics of only the last window than 
to rely on the entire history. 

17 



3.4    Limited memory windows 

A more continuous form of limited memory is one in which each agent at 
each time keeps a limited window into its past experience, and bases the 
HCR rule on only that window. We have considered two forms of windows, 
one in which it remembers the last n iterations in which it participated in 
a meeting, and another in which the agent remembers the last n iterations, 
regardless of whether it participated in a meeting in those. 

Our results of these two experiments are illustrated in Figures 4 and 5, 
respectively. In both of these figures the x coordinates describe the size of the 
memory window, and the y coordinates correspond to the number of trials 
from among 4000 trials of 800 iterations each, in which more than 85% of 
the agents reached a convention. Note that, somewhat surprisingly, in both 
cases it pays to forget, though some minimal memory is essential (in the first 
case this minimum is in fact equal to 2 iterations, and therefore this can be 
seen more easily in the second case). 

A right choice of the memory window while applying HCR will give us in 
fact an update rule which is a close to optimal update rule. The case where 
the memory size is between In to 3n (where n is the number of agents) gives 
us the above-mentioned close to optimal behavior, which is in fact a speed 
of convergence of 0(n • log(n)). More specifically, given that there are n 
agents who adopt HCR with a memory window 3n, we observed that all of 
the agents reach a convention after less than 3n • log(n) iterations (when we 
vary the number of agents.) The optimality stems from the above fact and 
from Theorem 2. The important point is that HCR with an appropriate 
limited memory window can be supplied to the agents as an update rule that 
will enable an efficient convention evolution in a system where there are no 
update delays. 

3.5     More complicated decisions 

The convention game captures a situation where a selection among a pair 
of successful joint actions has to be made. This can also be considered as 
a selection of an option from among two possible options, without an a- 
priori agreement about which option should be chosen.   What happens if 
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the agents have to agree on an option from among more than two available 
options, that is, on something more complicated than a bit? How does the 
number of options (potential conventions) affect the efficiency of convention 
evolution? 

In order to answer the above question, we use the following observation: 
whenever an agent performs a particular action and gets a particular feedback 
in a convention game, it can interpret it as an observation of the action used 
by the agent it encountered. For example, if the agent performs action a and 
gets a feedback of 1, we can say that the agent observed that another agent 
used the action a as well. Having the above interpretation for the feedback, 
we can define: 

Definition 9: The External majority (EM) update rule is an update rule 
which says: Adopt action i if so far it was observed in other agents more 
often than the other action and remain with your current action in the case 
of equality. 

We can show: 

Lemma 1: EM coincides with HCR in the convention evolution setting. 

Given the above Lemma, we can assume that the agents use EM and not 
HCR in the convention game. The advantage behind the use of EM is that 
there exists a natural extension of it to the case of more than two possible 
conventions: An agent will adopt the action it observed most often until the 
given point. Because of Lemma 1, this update rule extends HCR in a precise 
and natural way. Hence, we assume that the agents adopt this extension of 
EM. 

Our general results are as follows. What we find is that adding more 
potential conventions decreases the efficiency of convention evolution in a 
less than logarithmic fashion. In addition we find that the absolute amount 
of success in convention evolution decreases in less than logarithmic fashion: 
In order that the number of successes of convention evolution will decrease 
by factor of 2, we need to increase the number of potential conventions by a 
factor of more than 4, and in order to decrease it by a factor of 3 we need 
to increase the number of potential conventions by a factor of more than 8.6 

DWe have verified these basic results also in the case of limited memory. 
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Figure 6: The effects of the number of potential conventions 

Intuitively speaking, our results point to the following encouraging fact: the 
efficiency of convention evolution is not affected too badly by an increase in 
the number of potential conventions. 

Some specific results are illustrated in Figure 6. The x coordinate de- 
scribes on a logarithmic scale the number of potential conventions, while 
the y coordinate describes the number of successful trials (more than 85% 
reached a convention) from among 4000 trials of 800 iterations each. 

4    Cooperation Evolution 

As we see, the HCR update rule gives us close to optimal behavior as far as the 
efficiency of convention evolution is concerned. One might have hoped that it 
will give us also efficient cooperation evolution. However, although we proved 
that the HCR update rule yields the emergence of cooperative behavior, we 
are able to show that it is hopeless in the cooperation setting. We observed 
that phenomena and the other phenomena mentioned in this section for many 
instances of the cooperation game, but in order to demonstrate our results we 
will use a particular assignment of the game parameters: x = 2,v = 5,w = 6 
and n = 100. Our experiments show that (e.g., in the case of 100 agents) even 
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after hundreds of thousands of iterations we get that many of the agents are 
non-cooperative. Moreover, even when we start with a small number of non- 
cooperative agents the society evolves in a way that many additional agents 
become non-cooperative, and even after hundreds of thousands of iterations 
we never reach a situation in which most of the agents are cooperative! 

In the previous section we experimented with the effects of various pa- 
rameters on the efficiency of convention evolution. We showed that an appro- 
priate modification of several parameters (such as the memory size) improves 
the efficiency of convention evolution. We have therefore investigated how 
these parameters affect the efficiency of cooperation evolution. As it turns 
out, most of the related modifications (changing memory size, changing the 
update frequency, etc.) produced no real change; we remain with the the- 
oretical convergence to cooperation, and total inefficiency of the process in 
practice. However, some of the modifications did lead to insights, and in this 
section we describe one modification that revealed particularly illuminating 
phenomena. This modification is concerned with the ability of agents to com- 
municate and exchange their past histories with one another. In the original 
framework we assumed that when agents meet, they play an instance of the 
prisoners' dilemma game. Here we allowed some pairs of agents to simply 
exchange their past histories when they are selected to meet, rather than play 
the game. The fact that some pairs of agents play the game and some don't 
introduces a form of non-homogeneity to the setting; it turns out that this 
non-homogeneity gives rise to a surprising phenomenon. We describe this 
phenomenon in two non-homogeneous settings: one in which each agent has 
its own 'neighborhood of friends,' and another in which the entire populations 
is divided into two sub-societies. 

4.1 The effects of communication and initial conditions in a neighborhood- 
based setting 

The model embodied in the following definition is that each agent has 
a certain set of friends. (This set happens to be defined as follows. The 
agents are arranged on a ring, and two agents are friends if the distance 
between them along the ring is less than some threshold. Other definitions 
of neighborhood are possible, of course.) The stochastic game is played; when 
two non-friends meet they play an instance of the prisoners dilemma (with 
full memory of the past), but when two friends meet they simply exchange 
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histories, and set each of their histories to be the combined history of both. 

Definition 10: An n-2-g stochastic social game with communication radius 
k is an n-2-g stochastic social game where when agents i and j are selected, 
and j G [i — k,i + k](mod n), then agents i and j exchange their past histories 
instead of playing g. If agents i and j are selected but j £ [i-k,i+k](modn), 
then i and j play g. Given that the agents obey the HCR update rule we 
assume that whenever a pair of agents communicate instead of participating 
in g, they update their benefits from action x to be the sum of their respective 
individual benefits from x until the given point. 

In this section we will take g to be the prisoners' dilemma. 

The above communication structure is commonsensical and can be related 
to our everyday experience. Therefore, we urge the reader to speculate about 
the following: Assuming that most of the agents are initially cooperative, how 
does the parameter k affect the evolution of cooperation? Does it speed up 
the process and encourage the non-cooperators to change color, or does it slow 
the process even more? Before we answer this question, let us first establish 
an upper bound. The following theorem shows that, if there are at least two 
non-friends among the agents, then eventual convergence to cooperation is 
guaranteed also in the case of communicating agents.: 

Theorem 3: Given an n-2-g stochastic social game with communication 
radius k < n — 1, where g is the cooperation game, and where agents start 
with any action and use the HCR update rule, the following property holds: 
for every e > 0 there exists a bounded number M such that if the system 
runs for M iterations then the probability that the system will arrive at a 
situation in which a successful joint action is chosen is greater than 1 — e. 
Once we arrived at that situation, it will never be left. 

Although the result is interesting by itself, we have found that it hides 
surprising phenomena. Specifically, we have shown the following through 
simulations:7 

In the experimental results appearing in this section we assume an upper bound on 
the differences an agent might have between its benefits given different strategies. When 
the difference is higher than a given (large) number, we assume that it is cut off to that 
number. This is done in order to prevent computational overflow. 
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• The evolution of cooperation is nonmonotonic in the communication 
radius. 

• The evolution of cooperation is nonmonotonic in the initial number of 
non-cooperative agents. 

In other words, if we hold the number of initial cooperators fixed, then 
having either no communication at all or very rich communication is superior 
to having only some communication Even more interestingly, for any fixed 
communication radius above a certain threshold, having either most of the 
agents start out as cooperators or most of them start out as non-cooperators 
is vastly superior to having some of them start out as cooperators and some 
as non-cooperators; in fact, while in the former cases we were often able to 
obtain almost total cooperation in the society, in the latter case the system 
never converged, even after millions of iterations. The fact that it is ad- 
vantageous to start out with all non-cooperators is surprising, and at first 
blush perhaps even paradoxical; after all, on the way from becoming all 
non-cooperators to all cooperators, the nonconcurrent nature of our system 
forces it to pass continuously through all states with more even mixes of 
cooperators and non-cooperators. How can it then be that if we start out in 
those intermediate states the system never converges in practice? The an- 
swer lies in the fact that, in the presence of communication, the distribution 
of cooperators and non-cooperators does not uniquely determine the state of 
the system. In particular, when we start out with an even mix, the agents 
have no statistics about the state of the system; however when we start out 
with all non-cooperators, by the time the system arrives at a more even mix 
the agents have already accumulated substantial statistics about its current 
state. 

The results are best illustrated in a three-dimensional chart. We ob- 
served the phenomena of nonmonotonicity in many simulations, in which 
the number of iterations varied from several thousands to one million. We 
demonstrate a particular set of results in Figure 7.8 The X coordinate de- 
scribes the initial ratio of non-cooperative agents, where X = x means that 

8 For particular initial configurations, it is hard to observe from that graph the fact 
that the resulting number of cooperative agents is non-monotonic in the communication 
radius. This is due to the fact that in these cases the resulting situation always include 
many non-cooperative agents. 
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the probability for each agent to be initially non-cooperative is ^5^. The Y 
coordinate describes the communication radius, where Y = y means that the 
communication radius is 2y. The Z coordinate describes the average number 
of cooperative agents in 50 trials after 5000 iterations in each of the trials. 

4.2 The effects of communication and initial conditions in a disjoint 
sub-societies case 

The previous subsection described a natural case of adaptive behavior 
when communication among agents is feasible, and pointed to an interesting 
property of it. However, adaptive behavior of a similar type can be discussed 
also for other types of communication structures. A natural and complemen- 
tary version of communication structure is concerned with non-overlapping 
sub-societies. 

Definition 11: A bipartite n-2-g stochastic social game, is an n-2-g stochas- 
tic social game in which, when agents i and j are selected, they exchange 
their past histories if j <= | and i <= |, or j > f and t > f, and play 
g otherwise. Given that the agents obey the HCR update rule we assume 
that whenever a pair of agents communicate instead of participating in g, 
they update their benefits from action x to be the sum of their respective 
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individual benefits from x. 

As before, the property of eventual convergence is retained: 

Theorem 4: Given a bipartite n-2-g stochastic social game, where g is 
the cooperation game, and where agents start with any action and use the 
HCR update rule, the following property holds: for every e > 0 there exists 
a bounded number M s.t. if the system runs for M iterations then the 
probability that the system will arrive at a situation where only successful 
joint actions would be chosen is greater than 1 — e. Once we arrived at that 
situation, it will never be left. 

And again, as in the previous subsection, the above theorem hides an 
interesting phenomenon: 

• The evolution of cooperation is nonmonotonic in the initial conditions. 

More precisely, when almost all the agents start out as cooperators, the 
system ends up with many cooperators. The number of final cooperators 
degrades as the number of initial non-cooperators increase, but only up to a 
certain point. Beyond that point, increasing the number of non-cooperators 
actually increases the number of final cooperators. 

Here too we observed the phenomenon in many simulations, in which 
the number of iterations varied from several thousands to one million. We 
demonstrate a particular set of results in Figure 8. The X coordinate de- 
scribes the ratio of initially non-cooperative agents, where X = x means 
that the probability of each agent to be initially non-cooperative is x. The 
Y coordinate describes the average number of cooperative agents in 20 trials 
and after 200000 iterations in each of the trails. 

5     Related work on  complex dynamic sys- 
tems 

Several lines of research are related to our work. These include work in pop- 
ulation genetics, statistical mechanics, computational ecologies, quantitative 
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Figure 8:   Cooperation as a function of initial cooperation at the disjoint 
sub-societies case 

sociology, and mathematical economics. The discussion in this paper would 
not be complete without at least a brief description of the work carried out 
in these fields. We must acknowledge, however, that the combined body 
of material is so rich that neither we, nor anyone else with whom we have 
discussed these matters (and we have discussed them extensively), fully un- 
derstand the connections between the different lines of work. Each of these 
involve a setting with multiple elements (whether they are called particles, 
individuals, cells, or agents), which repeatedly undergo relatively simple lo- 
cal changes. The questions usually asked center around interesting global 
system properties that emerge over time out of these local changes, such as 
convergence and phase transitions. It is often tempting to try to carry over 
lessons from one setting to another. Indeed, some of these areas were inspired 
by one another; for example, work in quantitative sociology was inspired by 
work in statistical mechanics, and work in economics was inspired by work in 
population genetics. However, these inspirations have tended to be in spirit 
rather than in detail; the actual dynamic systems in the various areas are for 
the most part quite different, and also very sensitive in the sense that even 
small changes in them result in quite different system dynamics. This has 
also been our experience with our own framework; initially we had hoped 
to borrow results from other areas, but our framework then turned out to 
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be sufficiently different from any of the others so as to make such borrow- 
ing impossible, or at least very difficult. We are still very much interested 
in understanding technical connections with these other areas and our own 
work, anticipating cross influences, but at this point all we will do is briefly 
describe work in these other areas. 

Statistical mechanics models are a powerful tool for explaining a vari- 
ety of phenomena in physics. An important family of models in that area 
goes under the general name of the Ising model [6]. In a typical Ising model 
we have a set of spins, each of which can be in -1/1 state, and which are 
organized into some fixed spatial arrangement (such as a one-dimensional 
sequence or a two-dimensional grid). At each point in time the system is in 
some configuration (that is, the spins each have a particular value), and this 
system has a certain measure energy, or entropy. The energy has a compo- 
nent representing local interactions among the spins, and a component (that 
is sometimes omitted) representing the effect of some global magnetic field. 
The interaction among spins is usually limited to neighboring spins; a typical 
formula for the energy of the system will include the sum of all multiples x -y, 
where x and y are the values of neighboring spins. In terms of this energy a 
probability distribution is defined over the space of all configurations, which 
determines the likelihood of the system actually being in any particular con- 
figuration. This probability distribution has strong independence properties; 
the probability of a particular spin having a particular value is sensitive only 
to the values of the neighboring spins, and is independent of the values of 
spins that are spatially removed from it. 

The Ising model has proved useful for the investigations of various physi- 
cal properties such as spontaneous magnetization (that is, a majority of spins 
ending up with the same value), but it is also abstract enough to have mo- 
tivated other applications. For example, in some work within quantitative 
sociology the spins were interpreted as 'opinions,' the energy between indi- 
vidual spins as 'tension among individuals with differing opinions,' and the 
the orientation of the magnetic field as 'the opinion of the government.' 

As described, the Ising model does not provide a dynamical system, in 
the sense that it does not provide (e.g. differential) equations that describe 
the evolution of the system over time; what it does instead is define sta- 
ble (i.e., low energy) states of the system. This is also true for the more 
elaborate framework of spin-glass.   However, both have been augmented to 
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include a dynamical system. These dynamic models have also have found 
applications in other fields. One is quantitative sociology, where the models 
have been used to predict opinion shifts over time within large populations 
[16]. Statistical mechanics also provided the inspiration to Computational 
Ecology[A]; this work is based on the idea that the existence of many agents 
in an advanced computerized framework creates a "computational ecology." 
A computational framework, similar in its spirit to quantitative sociology, is 
developed and analyzed using the tools of statistical mechanics. The notions 
used there are 'strategies' of individual agents, the utility of having identical 
strategies ('cooperation') as well as its disadvantage, due to resource con- 
flicts ('competition'). A precise continuous framework is built, which allows 
several predictions on the behavior of those "computational ecologies" (such 
as chaotic behavior in some situations). 

These multi-agent frameworks borrow a powerful tool from statistical 
mechanics, but as a result they have a heavily 'non-local' or 'non-mechanical' 
flavor; the dynamics speak about how certain global statistics change over 
time (such as the average number of cooperating agents), rather than about 
how an individual agent changes its local state on the basis of its current local 
state and/or history. This of course is quite unlike our own framework, the 
dynamics of the atomic changes are the basis for change, and any statistical 
properties are derived from these. 

Work in population genetics [l] is closer to ours in this sense. Here we 
have a set of individuals, each belonging to one of several types. The sys- 
tem evolves in 'generations'; in each generation the individual evolves in a 
way that is defined by its type and the environment (which includes the 
other agents), and at the end of the generation the 'fitness' of each agent 
is computed, applying some given fitness function. The probability that an 
individual will survive into the next generation is proportional to its fitness. 
Additionally, usually between generations a process of 'recombination' takes 
place, in which some pairs of individuals in the populations (the 'parents') 
may combine to produce a new individual ('the offspring'), whose type will 
in general be defined by, but different from, the types of the parents. 

This setting is thus more local, or mechanical, than the frameworks dis- 
cussed earlier; the activity of each agent within a generation, its fitness func- 
tion, and the reproductive process all have a transition-oriented, automata- 
like flavor.   An important global component remains, however, namely the 
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fitness function. The fitness function, which represents unspecified external 
selection forces, is computed on the basis of global system properties, and is 
applied to all agents equally. For example, if we consider the earlier 'opinion' 
example, a typical definition of the fitness of an individual with an opinion in 
a population would be the proportion of individuals in the population having 
the same opinion. This global element turns out to have a strong influence on 
the dynamics of the system. (This is perhaps the deepest difference between 
the population genetics setting and our own; but of course may other differ- 
ence exist, including the notion of an accumulated history, limited memory, 
communication, and our particular stochastic process of encounters.) 

The model used in population genetics has strongly influenced work in 
mathematical economics; this is especially true of work published in recent 
years. In general, mathematical economics has attempted to explain and 
predict behaviors of 'rational' agents. The notion of rationality is based on 
associating a well-defined 'utility' with alternatives actions (or 'strategies') 
available to an agent; a rational agent is that which selects actions which 
maximize its utility. A central concept in mathematical economics is that 
of a Nash-equilibrium: a joint behavior, deviation from which by any one 
agent will lower that agent's utility (and hence every agent, being rational, 
will not deviate from it, and the state will remain stable). Nash equilibria 
are clearly an important notion, as are others such as Pareto optimality. We 
have discussed already in the paper why these notions do not a priori hold 
any special significance in our setting. 

The work in economics that is closest in spirit to ours is that on 'evolu- 
tionarily stable strategies', or ess's [5]; this work is also the most strongly 
influenced by population genetics within economics. A typical setting in this 
line of research looks as follows. Agents within a given population meet each 
other randomly, and when they do so they play some particular pre-defined 
game (such as the prisoners' dilemma). For a while every agent plays the 
game the same way (i.e., does not switch strategies). But then, after a certain 
period (a 'generation'), every agent individually calculates what would have 
been the best choice in hindsight for that period, and switches to that choice; 
this is called the 'best response' rule. The question is then asked whether the 
system will converge to a certain state, or exhibit other interesting behaviors. 

There are clear similarities between this framework and ours, but, again, 
significant differences. First and foremost, in that work there is an assump- 
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tion that the periods are long, long enough so for almost all agents to gleaned 
almost correct statistics on the state of the system. This assumption, inher- 
ited directly from the global nature of the fitness function in population 
genetics, is directly at odds with our framework. Other important differ- 
ences include the absence of any system parameters such as memory length 
and communication. It is also the case that whereas we have been concerned 
mostly with the efficiency of social change, work in this area of economics 
seems to have neglected this entirely, concentrating only on qualitative no- 
tions such as convergence and oscillation. Still, this area is probably the 
closest in spirit to our work, and we are interested in developing stronger 
link with it. 

6    Summary 

We have defined the notion of stochastic social games, defined two that are 
closely related to the economics literature, introduced a particular update 
rule called HCR, and investigated its properties - first giving coarse analytic 
results, and then reporting on finer grained experimental ones. 

Beside the novelty of our work, we believe that it also creates a bridge 
between work in economics and work in machine earning, two disjoint areas 
heretofore, and in the process generalizes both. We generalize research in 
machine learning by introducing co-learning, and we adapt the evolutionary 
approach discussed in economics by importing computer-sciency elements in 
the spirit of reinforcement learning. More specifically on the latter, since 
our perspective is that of system designers (that is, we do not attempt to 
understand God; we are god), we introduce into the game-theoretic frame- 
work additional degrees of freedom: an external criterion for satisfactory 
social behavior (in contrast with internal rationality criteria such as Nash- 
equilibrium), and an external update rule which govern the way in which 
each agent updates its behavior based on purely local information. 

As was mentioned in the introduction, this work is part of our work on 
multi-agent systems. In addition to continuing the investigation described 
here, we are interested in applying the lessons to system design. We are 
currently experimenting with co-learning based dynamic load balancing, and 
hope to report on it in the future. 
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Appendix: Sketch of Proofs 

Proof of Theorem 1 (sketch): 

Recall that the payoff matrix of a social agreement game has the structure 

a b 
a x,x U, V 

b v,u y,y 

in which x,y,u,v ^ 0, either x > 0 or y > 0 or both, and either u < 0 or 
v < 0 or x < 0 or y < 0. 

We prove the theorem by case analysis. In principle we need to examine 
16 cases, each case determined by the polarity (either positive of negative) of 
x, y, u, v. However, since we can assume without loss of generality that x > 0, 
and since the case in which u, v,x and y are all greater than 0 is ruled out, 
we are left with seven cases. Notice that the cooperation game is a special 
case of the case in which y < 0,u < 0,v > 0, and the convention game is a 
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special case of the case in which y > 0,u < 0,v < 0. We will provide the 
proof for these two cases; proofs for the other cases can be obtained in a 
similar fashion. 

Consider the case where y > 0,u < 0,v < 0. First, observe that there 
always exists a pair of agents with identical actions. Then, notice that the 
following process can be generated with a probability p = jhs and leads 

to a successful joint action (all agents will adopt the same action) in g(n) 
iterations, where both f(n) and g(n) are bounded by an exponent of the form 
n" where s is polynomial in I (the memory size) and n. The process is defined 
as follows: a pair of agents (i,j) with the same action is selected and meet 
each other until all of the rest of the agents forget their past. Afterwards, i 
meets a member x ^ j , and afterwards meets j. The last step continues in 
a loop where at each time i meets a new x until it meets all the members in 
the society. It is easy to see that this process will bring to a successful joint 
action (all agents will adopt the same action). As a result, if the system runs 
for M = k • g(n) ■ f(n) iterations then the probability that a successful joint 
action will not be reached (not all of the agents will adopt the same action) 
is at most e~k. Taking k > —log(e) yields the desired result. 

Consider the case where y < 0, u < 0, v > 0. In the sequel we will refer to 
an agent who adopts the action a as a "cooperative" agent and to an agent 
who adopts b as a "non-cooperative" agent. The structure of the proof is as 
the structure of the proof regarding the case where y > 0,u < 0,v < 0, but 
the basic process will now change. This process will now at first guarantee 
that there will be at least two cooperative agents. In order to guarantee this, 
the process will include in its beginning a procedure of creating a pair of 
cooperative agents (if no such pair exists). This procedure selects two non- 
cooperative agents and two additional agents, and let the latter pair meet 
until the former pair will forget its past. Afterwards the process selects the 
former (non-cooperative) agents to participate in a meeting. This will create 
a pair of cooperative agents. In a second stage this pair of cooperative agents 
will meet until the other agents will forget their past, and then pairs of non- 
cooperative agents will meet sequentially. This will create a society where at 
most one agent is non-cooperative. In order to make this agent cooperative 
the process will end with the following procedure: the non-cooperative agent 
will meet a cooperative agent until it will become non-cooperative as well, 
and then a pair of cooperative agents will be selected and meet each other 
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until the rest of the agents will forget their past. The process will end by an 
encounter in which the two non-cooperative agents meet each other. 

The above process will take place with probability p — jhr and will 

guarantee that after g(n) iterations all of the agents will become cooperative, 
where appropriate exponential bounds can be given for f(n) and g{n). Hence, 
the number M can be calculated as for the convention game, and the desired 
result can be obtained. 

Proof of Theorem 2 (sketch): 

Let Yn{m)) be a random variable which contains the number of agents 
that did not participate in any iteration of n-2-g until iteration m. It is easy 
to see that E[Xn(m)] > k • E[Yn(m)} for some constant k > 0 and for every 
n and m. In particular, E[Xn(T(n))] > k ■ E[Yn(T(n))] for every n. Hence, 
it suffices to show that if E[Yn(T(n))] converges to 0 as a function of n, then 
T(n) is at least of the order of n • log{n). The probability that a particular 
agent will not be chosen along T(n) = (n — 1) • f(n) iterations is bounded 
hy C1 - (Aj)2'(n_1)'/(n) which converges to e"2/H If e~2^ > ± then we 
will get that E[Yn(T(n))] > 1 and hence there is no convergence to 0. But, 
in order to have e~2^n) < ^ we must have f(n) > 0.5 • log(n) (where we 
consider w.l.o.g the natural log). This gives us the desired lower bound. 

Proof of Lemma 1 (sketch): 

For ease of exposition let us denote the actions as 0 and 1, and let Q be 
the accumulated payoff for action i of a given agent j. Notice that Q equals 
to the number of times that j met an agent which used i minus the number of 
times j met an agent which used 1 — i, when its (j's) action was i. According 
to HCR, an agent chooses Cj if it is larger than ci_;, but CQ — c\ = (number of 
times you met 0 when you had 0 minus number of times you met 1 when you 
had 0) - (number of times you met 1 when you had 1 minus number of times 
you met 0 when you had 1), which equals to the number of times you met 
0 minus the number of times you met 1. Hence, we get that the comparison 
between the accumulated payoffs coincide with the comparison between the 
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number of times the different actions were encountered in other agents. This 
gives us the desired result. 

Proof of Theorem 3 (sketch): 

The proof is similar to the proof of the cooperation game case of Theo- 
rem 1, but the basic probabilistic process will be changed a bit: 1. The pair 
of agents selected in the beginning of the process should be from different 
sub-societies. 2. The above pair of (initially cooperative or which becomes 
cooperative using the above-mentioned process) agents will meet until the 
rest of the agents forget their past; Afterwards, a cooperative behavior can 
be spread out in the society using the communication mechanism. I 

Proof of Theorem 4 (sketch): 

The proof is similar to the proof of Theorem 3. I 
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